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Wearable based monitoring and self-supervised contrastive
learning detect clinical complications during treatment of
Hematologic malignancies
Malte Jacobsen 1,2✉, Rahil Gholamipoor3, Till A. Dembek4, Pauline Rottmann5, Marlo Verket 2, Julia Brandts2, Paul Jäger5,
Ben-Niklas Baermann5, Mustafa Kondakci6, Lutz Heinemann7, Anna L. Gerke5, Nikolaus Marx2, Dirk Müller-Wieland2,
Kathrin Möllenhoff 8, Melchior Seyfarth 1,9, Markus Kollmann 10,11✉ and Guido Kobbe5,11

Serious clinical complications (SCC; CTCAE grade ≥ 3) occur frequently in patients treated for hematological malignancies. Early
diagnosis and treatment of SCC are essential to improve outcomes. Here we report a deep learning model-derived SCC-Score to
detect and predict SCC from time-series data recorded continuously by a medical wearable. In this single-arm, single-center,
observational cohort study, vital signs and physical activity were recorded with a wearable for 31,234 h in 79 patients (54 Inpatient
Cohort (IC)/25 Outpatient Cohort (OC)). Hours with normal physical functioning without evidence of SCC (regular hours) were
presented to a deep neural network that was trained by a self-supervised contrastive learning objective to extract features from the
time series that are typical in regular periods. The model was used to calculate a SCC-Score that measures the dissimilarity to
regular features. Detection and prediction performance of the SCC-Score was compared to clinical documentation of SCC
(AUROC ± SD). In total 124 clinically documented SCC occurred in the IC, 16 in the OC. Detection of SCC was achieved in the IC with
a sensitivity of 79.7% and specificity of 87.9%, with AUROC of 0.91 ± 0.01 (OC sensitivity 77.4%, specificity 81.8%, AUROC
0.87 ± 0.02). Prediction of infectious SCC was possible up to 2 days before clinical diagnosis (AUROC 0.90 at −24 h and 0.88 at
−48 h). We provide proof of principle for the detection and prediction of SCC in patients treated for hematological malignancies
using wearable data and a deep learning model. As a consequence, remote patient monitoring may enable pre-emptive
complication management.
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INTRODUCTION
Treatment of patients with hematological malignancies is associated
with a high incidence of clinical complications, such as infections,
cardiac events, and immunologic dysregulations1,2. These potentially
life-threatening complications require early recognition and ther-
apeutic intervention, as it is known that delayed intervention is
associated with increased morbidity and mortality3,4. Recent
diversification of oncological treatment options, including e.g.
CAR-T cell therapy, increase therapeutic options but add to the
spectrum of complications, such as ‘cytokine release syndrome’.
Today’s management of complications depends on the setting of
oncological treatment: Under hospital conditions - referred to as
inpatient setting-the management of complications relies on
intermittent recordings of vital signs, daily clinical examinations,
and laboratory tests by health care professionals (HCP). However, an
increasing number of oncological treatments are applied in the
outpatient setting5, where complication detection relies primarily on
patient self-assessment6. Early detection of (subtle) symptoms
indicating complications is challenging and is often delayed. To
avoid ‘late show ups’, outpatients are routinely admitted to their
treatment center without evidence of complications, which burdens
patients and HCP7. Therefore, there is a need for innovative

concepts for early and reliable detection of treatment-associated
complications8.
Remote patient monitoring (RPM) with medical wearables

represents a novel option for non-invasive and continuous real-
time monitoring of vital signs and physical activity9–11. Medical
wearables provide longitudinal and high-resolution health data
that expand monitoring options and allow real-time complications
detection by classification models12,13. For automated classifica-
tion, the recorded datasets should be pooled across all patients to
increase the statistical power of machine learning models, which
frequently show superior performance for large data sets
compared to classifiers that use hand-engineered features.
However, with a single classification model at hand, the challenge
remains of how to adjust the classification threshold for each
patient. To address this challenge, self-supervised feature learning
from all patient data was combined with a similarity score to
assess proximity to patient-specific features. Similar concepts have
been successfully employed for anomaly detection in the visual
and audio domains14,15.
Here we report that a wearable-based RPM approach in

combination with a self-supervised contrastive deep learning
model can sufficiently detect and predict serious clinical
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complications (SCC) for in- and outpatients during their oncolo-
gical treatment for hematological malignancies.

RESULTS
Performance of SCC-score
For the patient-non-specific and patient-specific approach SCC-
Scores were significantly higher in non-regular hours and days,
indicating a higher risk for SCC prevalence compared to sets of
regular hours (Table 2). This observation was stable with ten-fold
cross-validation (Supplementary Fig. 3).
The performance in the patient non-specific approach showed an

average AUROC for IC of 0.77 and OC 0.78 (Fig. 1a). A significant
increase in performance for the patient-specific approach was
observed (IC 0.87 and OC 0.91, Fig. 1b). A per-day SCC-Score further
increased the AUROC by ~10% (IC 0.85 and OC 0.89, Fig. 1c, d). The
per-day SCC-Score for the patient-specific approach resulted in the
best estimate for SCC (Fig. 1d). For a randomly chosen patient from
the IC and OC, AUROC values of 0.85 and 0.84 were observed,
respectively (Fig. 1e, f). Excluding patient specific data of these
patients during training revealed an equivalent performance. The
per-day SCC-Score showed similar good performance if the

annotation of SCC included the buffers of 48 h before and the
24 h after the documented SCC day (data not shown). Assessment of
hourly SCC-Scores for the infectious vs. non-infectious SCC showed
an 8.4% increase in AUROC pro-infectious (Fig. 2a). Performance of
the SCC-Score increased with higher percentages of patient specific
regular hours in the reference set (Fig. 2b).

Prediction capabilities of SCC-Score
To evaluate the SCC-Score’s prediction capabilities over time, the
time point of clinical diagnosis of infectious SCC was set to time
t= 0 h. The SCC-Scores computed by the model for the hours before
and after each documented SCC showed a transient increase
followed by a transient decrease, attending high SCC-scores ~48 h
before and 24 h after diagnosis (Fig. 3a and Supplementary Table 4).
To visualize that both IC and OC follow the same transient behavior
despite their difference in average SCC-Score values, the AUROC
values were computed over time (Fig. 3b).

Relationships of the SCC-Score
IC had a lower SCC-Score variance in regular hours than OC
(−17.8%). The mean SCC-Score levels differed between the IC and

Fig. 1 Performance of the SCC-Score detecting SCC. The area under the Receiver Operating Characteristic curves (AUROC) for the IC (blue
line) and OC (green line) using both hourly and per-day SCC-Scores, in the patient-non-specific approach (a, c) and with the patient-specific
approach (b, d). AUROC curves using the patient-non-specific approach are given for patient #1001 (e) from the inpatient cohort (blue) and
#1067 (f) from the outpatient cohort (green) showing individual performance of the SCC-Score. Red lines (in e and f) show the performance
when the specific data of the patients was excluded during training.The dots on the lines mark the cut-point that optimizes the detection of
sensitivity and 1-specificity (Youden index). Standard errors of the AUROC curves are computed from ten-fold cross-validation are given in
shaded areas.
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OC, with IC scores 8.4% higher than OC scores. This difference in
SCC-Score levels was more pronounced for infectious SCC, with IC
scores 15.9% higher than OC scores. At a sensitivity of ~95.0% for
the patient non-specific approach the hourly SCC-Score showed a
low specificity (IC 22.2% and OC 22.2%). In contrast, only a
moderate decline in specificity was observed (IC 56.6% and OC
41.4%) for the patient-specific approach.
The averaged z-score of ten-fold cross-validation for days with

different types of SCC differ (Table 1; last column), with z-scores
ranging from 1.00 for syncope (n= 2) to 3.28 for paroxysmal atrial
tachycardia (n= 3). For the most common SCC (‘Infections and
infestations—other’), the averaged z-score was 2.21 (n= 66).

DISCUSSION
Our results show that wearable-based RPM combined with a deep
neural network model enables the calculation of an SCC-Score
that allows for detecting and predicting SCC in patients receiving
intensive treatment for hematological malignancies. Prediction
was possible up to 48 h before documented SCC are diagnosed
clinically. This study can be regarded as a successful ‘proof of
principle’ for wearable-based RPM during oncological treatment
where patients are at high risk for life-threatening complications.
Heterogeneous SCC in terms of type and severity were

observed. As the trajectory of the SCC is diverse, the induced
changes in vital signs and physical activity vary to a different
degree. For example, an infection may develop over the course of
hours and days, whereas a hypertensive crisis or cardiac
arrhythmias can both occur and resolve from one moment to
the other. The SCC-Scores represent this diversity.
The overall levels of the SCC-Scores observed for regular hours

and non-regular hours in the two cohorts (IC vs OC) were different.
The cause for this difference is not clear, it might reflect the higher
physical activity levels of patients in the OC. Relative recording
times in both cohorts were comparable16. The degree of change in
the SCC-Score induced by SCC is similar in IC and OC, which
results in a comparable AUROC analysis outcome (Table 2). Given
the different levels in SCC-Scores between the cohorts implicates
necessity to record data in a precise clinical context17. A solution
to this problem may be on the one hand to collect a large amount
of ‘regular’ data in patient populations with heterogenuous
behaviour in focus. On the other hand our algorithm combines
data from the individual patient with the complete body of data
acquired from patients in a similar clinical situation. In combina-
tion these options may enable the ‘phenotyping’ of vital signs and
physical activity measures to optimize the reference set and
improve generalizability of this approach to new patients.
In the subgroup analysis for infectious SCC, a transient increase of

SCC-Scores before clinical SCC diagnosis (at t= 0 h) allows for the
prediction of infectious SCC at an early stage. The SCC-Score shows a
steeper slope before the diagnosis than the decrease in the hours
post-diagnosis (Fig. 3). This increase could be driven by the
uninhibited evolvement of e.g. an infection, whereas the decline is
probably associated with the therapeutic intervention initiated. This
phenomenon allows for the speculation that treatment success of
an SCC or failure may also be tracked by RPM.
To detect the specific signatures in the recorded vital signs and

physical activity induced by SCC, regular and non-regular hours
during treatment were compared. In contrast to other studies, pre-
treatment recordings were omitted, as it can be proposed that
vital signs and physical activity differ significantly between pre-
treatment and during treatment, even in the absence of SCC18.
The performance of the patient-specific analysis of our

approach depends on the number of regular hours recorded for
a single patient. If the number of recorded regular hours is low
and does not represent a good approximation for the distribution
of regular hours for a given patient, the false positive rate
increases. False positives arise if for a regular hour in the test set

Fig. 2 Subanalysis of SCC-Score performance. a Area under the
Receiver Operating Characteristic curves (AUROC) using hourly SCC-
Score with the patient-specific approach for infectious (red line) vs.
non-infectious (purple line) for the total. Standard errors of the
AUROC curves are computed from ten-fold cross-validation and
show as shaded areas. b Performance of the SCC-Score with
increasing percentage of specific regular hours in the reference set
(red line).

Fig. 3 Prediction performance of the SCC-Score. Time dependence
of the SCC-Score for infectious SCC. a Score values before and post-
diagnosis at time point t= 0 h for the patients in the Inpatient
Cohort, and Outpatient Cohort. Shaded areas indicate the standard
deviation of SCC-Score values. b Prediction performance (AUROC) of
hours containing infectious SCC based on SCC-Score. Standard
errors are computed from ten-fold cross-validation and shown as
shaded areas.
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Table 1. Specifications of Serious Clinical Complications (SCC).

No. Adverse event Criteria for Grade 3 in common terminology criteria for adverse events (CTCAE) SCC
[n]

z-score

1 Infections and infestations —othera Severe or medically significant but not immediately life-threatening; hospitalization or
prolongation of existing hospitalization indicated; disabling; limiting self-care ADL

66 2.21

2 Lung infectiona IV started 11 2.67

3 Hypertension Stage 2 hypertension […]; medical intervention indicated […] 11 2.18

4 Mucositis orala Severe pain; interfering with oral intake 11 1.94

5 Nausea Inadequate oral caloric or fluid intake, TPN 9 1.48

6 Pulmonary edema diuretics indicated 3 2.28

7 Sinus tachycardia Urgent medical intervention indicated 3 2.99

8 Allergic reaction Prolonged […] and/or brief interruption of the infusion 3 1.52

9 Pain Severe pain; limiting self-care ADL 3 2.64

10 Paroxysmal atrial tachycardia IV medication indicated 3 3.28

11 Hypotension Medical intervention or hospitalization indicated 2 2.42

12 Dyspnea Shortness of breath at rest; limiting self-care ADL 2 1.79

13 Diarrhea Increase of ≥7 stools per day over baseline 2 2.33

14 Syncope Fainting; orthostatic collapse 2 1.00

15 Periorbital edema Diuretics indicated 1 1.15

16 Oral pain Severe pain; limiting self-care ADL 1 1.18

17 Colitisa Severe abdominal pain […]; medical intervention indicated; peritoneal signs 1 1.02

18 Hypokalemia <3.0–2.5 mmol/L; hospitalization indicated 1 1.53

19 Immune system disorders—other Severe or medically significant but not immediately life-threatening; hospitalization […] 1 1.14

20 Cholecystitisa Severe symptoms; radiologic, endoscopic, or elective operative intervention indicated 1 1.75

21 Catheter-related infectiona IV antibiotic, antifungal, antiviral, radiologic, or operative intervention indicated 1 2.77

22 Hepatobiliary disorders—other Severe or medically significant but not immediately life-threatening; hospitalization […] 1 1.60

23 GGT increased >5.0–20.0 x ULN 1 2.30

SCC were specified based on adverse events classification (Common Terminology Criteria for Adverse Events v4.0 (2009)) sorted in order of cumulative
frequency of occurrence for Inpatient cohort (IC) and Outpatient cohort (OC). The average z-score using ten-fold cross-validation is given for the trajectories of
the SCC over days (last column). ADL Activities of Daily Living, IV Intravenous, TPN Total Parenteral Nutrition, BP Blood Pressure, GGT Gamma-Glutamyl
transferase, ULN Upper Limit of Normal,
aGrouped as ‘infectious SCC’; […] left out for visualization.

Table 2. SCC-Score performance.

Approach Type Model regular
hours [n]

non-
regular
hours [n]

SCC-Score regular
hours [mean ± SD]

SCC-Score
non-regular
hours
[mean ± SD]

P-value Sensitivity /
Specificity [%]

~95% Sensitivity /
Specificity [%]

AUROC
( ± SD)

Patient
non-
specific

SCC IC 1299 10,073 0.098 ± 0.037 0.144 ± 0.049 <0.0001 73.6 / 66.7 95.3 / 22.2 0.77 ± 0.02

OC 526 1701 0.089 ± 0.045 0.132 ± 0.061 <0.0001 75.3 / 66.7 95.2 / 22.2 0.78 ± 0.02

Total 1825 11,738 0.096 ± 0.038 0.146 ± 0.051 <0.0001 71.4 / 73.7 95.1 / 28.3 0.80 ± 0.01

infectious SCC IC 1486 8207 0.097 ± 0.038 0.145 ± 0.050 <0.0001 69.5 / 74.7 95.3 / 27.3 0.80 ± 0.01

OC 541 1553 0.079 ± 0.039 0.122 ± 0.062 <0.0001 57.7 / 84.8 95.1 / 21.2 0.79 ± 0.03

Total 2027 9760 0.097 ± 0.038 0.150 ± 0.051 <0.0001 74.6 / 72.7 95.2 / 31.3 0.82 ± 0.01

Patient-
specific

SCC IC 1299 10,073 0.112 ± 0.052 0.275 ± 0.132 <0.0001 79.7 / 87.9 95.2 / 56.6 0.91 ± 0.01

OC 526 1701 0.103 ± 0.058 0.209 ± 0.113 <0.0001 77.4 / 81.8 95.2 / 41.4 0.87 ± 0.02

Total 1825 11,738 0.111 ± 0.056 0.299 ± 0.141 <0.0001 81.6 / 88.9 95.2 / 61.6 0.93 ± 0.01

infectious SCC IC 1486 8207 0.111 ± 0.053 0.283 ± 0.138 <0.0001 82.5 / 87.9 95.0 / 62.6 0.93 ± 0.01

OC 541 1553 0.091 ± 0.051 0.199 ± 0.114 <0.0001 71.9 / 88.9 95.1 / 37.4 0.88 ± 0.02

Total 2027 9760 0.112 ± 0.055 0.304 ± 0.144 <0.0001 84.4 / 88.9 95.0 / 66.7 0.94 ± 0.01

SCC-Scores based on the patient’s non-specific and patient-specific approach of ‘hours for testing’ containing regular hours and non-regular hours are
reported. These hours were previously unseen by the deep learning model. Differences in mean SCC-Scores in the respective cohorts (SCCIC, SCCOC, SCCTotal)
between regular hours and non-regular hours and respective p-values (two-sided t-test) are reported. To account for multiple testing, Bonferroni correction
was applied and the significance level was set to 0.05/12= 0.0042. Performance indicators (at Youden Index) of the SCC-Score were calculated for detection of
SCC, and infectious SCC in patients in the IC, OC, and Total, separated for hours. In addition, specificity is reported at a sensitivity of ~95% to ensure a high ratio
of SCC detection. AUROC of the SCC-Scores are given in the last column (standard deviation (SD) from ten-fold cross-validation).
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no similar hour in the reference set can be found and
consequently, this test hour is classified as SCC. It should be
emphasized that a test hour and its best match in the reference
set are typically found next to each other on the timeline
(Supplementary Fig. 4a, b). This observation reflects the fact that
the recorded time series of vital signs and physical activity are far
from ergodic. Ergodicity implies that for each regular hour in the
dataset, there exists another regular hour with similar features but
sufficiently separated in time such that all time correlations are
decayed. Therefore, the reported AUROC values of this work are
upper bounds and can only be achieved in clinical practice for
sufficiently long recordings of regular hours.
Training deep learning models on complex data follows the

maxim that ‘big is better’, which refers to jointly enlarging models,
data sets, and training times19. This study confirms this trend by
taking training sets of different sizes but keeping model and training
times constant (Supplementary Fig. 5). The employed strategy of
training a single deep neural network to extract relevant features
from raw data (end-to-end training) has the advantage that it can
handle artefacts and data gaps, without the need of additional data
pre-processing. Using a dilated residual network architecture as
feature encoder, which has equivariance to time shifts as inductive
bias, has the advantage to be more data efficient in comparison to
other architectures, such as transformers20.
Patients’ responses of vital signs and physical activities to SCC of

any kind can vary strongly. Therefore, we applied patient-specific
evaluation instead of using rigid thresholds that apply to all
patients. However, the patient-specific evaluation uses a single
SCC-Score model trained on the totality of provided vital signs and
physical activity measures from all patients. For real-world
adaption, the trained deep learning model can be implemented
on a smartphone, as the computationally demanding training of
the model can be done remotely.
From a clinical point of view, it is desirable to minimize the risk

of missing SCC. This choice is somewhat arbitrary and needs to be
discussed according to the clinical context18. Depending on the
situation under consideration and prior knowledge (e.g. given by a
pre-test probability), clinicians can individually choose the
decision boundary such that a certain balance of sensitivity and
specificity is achieved. This decision boundary, which is directly
related to the significance level of the statistical test, may also be
adapted during real-world application when more information
becomes available21. In general, the SCC-Score calculated by our
model represents a single value that can be translated into
actionable clinical information.
In the future, automated SCC detection by a wearable-based

RPM in clinical oncology offers the option of permanent patient
surveillance and may thereby improve complication management.
Ideally, recorded data would be analyzed in real-time to provide
actionable information for early and effective treatment. This may
improve clinical pathways, e.g. implementation of demand-driven
visits, which could reduce physicians‘ and nurses‘ workload in
specialized clinics22. Furthermore, a decrease in the frequency of
blood sampling during treatment of patients for their hematolo-
gical malignancy is possible as recent research indicated a good
correlation of wearable recorded vital signs with laboratory
measurement results23. This approach may reduce treatment
and disease burden by enabling optimal timing of interventions to
counter SCC.
The sample size evaluated in this exploratory study is limited;

however, this is the largest trial employing wearable-based RPM in
patients treated for hematological malignancies10. Limitations of the
wearable used in this study are described elsewhere16. Grading of
SCC with Common Terminology Criteria for Adverse Events (CTCAE)
grade ≥3 may influence vital signs and physical activity differently.
Using this grading threshold for SCC omits lower grade complica-
tions, which, however, may already be of therapeutic relevance and
affect the patient’s wellbeing. Not all SCC may affect vital signs and

physical activity to the degree that they are likely to be detected by
a wearable-based RPM approach; infection-induced SCC might lead
to a stronger’signal’ than some other SCC and may therefore be an
ideal target for RPM. However, it is unclear which sets of parameters
are required for optimal SCC detection. This question must be
addressed in subsequent evaluations.
In summary, this study provides proof of the principle that SCC

in a vulnerable patient population of patients receiving treatment
for hematological malignancies can be detected and predicted
with an innovative approach, based on continuously recorded
wearable data combined with a self-supervised deep learning
model. Prospective confirmatory studies are needed to document
the clinical benefit of this approach in clinical practice.

METHODS
Study design and setting
This was an open-label, single-arm, single-center, investigator-
initiated cohort study covering patients with a hematological
malignancy receiving oncological treatment (chemotherapy alone
or in combination with radiotherapy and/or hematopoietic stem cell
transplantation) (Supplementary Fig. 1). The study was conducted at
the Department of Hematology, Oncology, and Clinical Immunology
of the University Hospital Düsseldorf, Germany16. The study was
approved by the Ethics Committee of the Medical Faculty of the
Heinrich Heine University Düsseldorf and was registered in the
German clinical trials register (DRKS00014782) on 29 May 2018.
Before study participation, patients were informed that they would
not derive immediate individual benefits from study participation. All
patients provided written informed consent before study inclusion.

Participants
Inclusion criteria were patients’ age ≥18 years and an indication
for a treatment protocol with expected hematotoxicity according
to CTCAE grade 4 alone or in combination with stem cell
transplantation. Exclusion criteria were medical or mental condi-
tions impairing the ability to continuously wear the wearable (e.g.
dementia, skin abnormalities) and active implants, which might
impair recordings. During visits, the following data were obtained:
medical history, comorbidities, symptoms, physiological para-
meters, laboratory values, and physical examination. A conve-
nience sample of 79 patients was recruited: 54 patients were
treated in the hospital (inpatient cohort (IC)), and 25 patients
received outpatient-based treatment (outpatient cohort (OC))
(Supplementary Table 1, 2).
Patients and clinical staff were blinded for wearable data.

Data collection and preparation
The commercially available wearable (Everion, Biovotion AG,
Switzerland) employed is a CE-marked medium-risk device (class
IIa) according to Directive 93/42/EEC (firmware used was for
clinical investigation only). Different sensors implemented in this
wearable were used for non-invasive monitoring of vital signs and
physical activity (e.g. photoplethysmography, temperature probe,
accelerometer). Longitudinally recorded parameters, such as heart
rate, temperature, respiratory rate, and physical activity, and if
applicable, respective quality indices were calculated with
proprietary methods implemented in the firmware (Supplemen-
tary Table 3). Raw signals were acquired with a frequency of
>30 Hz; calculated parameters were stored with a rate of 1 Hz,
resulting in up to 3,600 data points per hour. The battery of the
wearable had to be recharged daily for 90 min.
Two wearables for alternate use were assigned to each patient

at the baseline visit before starting treatment to enable
continuous wearable-based monitoring of vital signs and physical
activity in these patients. The frequency of subsequent study visits
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(app. every 90 h for device swap) was determined by the limited
data storage capacity of the wearable.
Non-hematological SCC were defined by meeting the criteria of

CTCAE (v4.03) grade ≥324. Clinical documentation (visit entries,
laboratory results, diagnostic results) was independently and
retrospectively reviewed by two investigators (PR, MJ) for the
occurrence of SCC. For each clinically documented SCC, a starting
time point was noted. Infectious SCC with no focus of origin were
classified as ‘Infections and infestations—other’. Recovery from a
SCC was defined as the absence of documented clinical
symptoms, pathological laboratory, and diagnostic results to
consider varying trajectories of different types of SCC, e.g. a
hypertensive crisis with rapid onset compared to an infection,
which develops over several hours/days.
Time series data were recorded for IC and OC patients that

together formed the total cohort (Fig. 4). Data sets were split into
hours according to their timestamps, and only hours with ≥3000
data points were included to ensure sufficient information content
among hours (Supplementary Fig. 2a). No predefined quality
constraints were used. For each day with documented SCC, all
24 h were annotated as non-regular, regardless of the exact
timestamp of the respective SCC start. Infectious SCC received
special annotation for later subgroup analyses. Since changes in
vital signs and physical activity may already occur before SCC
criteria are fulfilled, a time buffer was introduced given by 48 h
before the day with a timestamp of SCC onset and 24 h post-
recovery from an SCC. The resulting periods were also annotated
as non-regular. Hours outside the non-regular hours were
annotated as regular (Supplementary Fig. 2b).
A total of 140 SCC events were extracted from the clinical

documentation of the patients (Table 1). The data of two patients
without regular hours and early study withdrawal were excluded.
The cumulative incidence of SCC in the IC was 90.7%, and those in
the OC were 48.0%. More than one SCC occurred in 30 patients in
the IC and 3 patients in the OC. Infectious SCC accounted for
65.0% of the total SCC and were the most frequent SCC in both
cohorts (IC 63.7%, OC 75.0%).
Wearable data were recorded for 24,047 h for the IC patients;

the median recording time per patient was 457.4 (IQR
324.3–538.5) hours. The OC patients had 7187 h of total recording
time, with a median of 315.5 (227.4–340.8) hours per patient.
Hours meeting data constraints were 23,262 h (96.4%) in the IC
and 6955 h (96.3%) in the OC.

Deep learning model
For classifying the recorded hours, a self-supervised contrastive
learning method was used that learns to organize complex
structured data such that data points with similar features are
located close to each other. In particular, a ResNet architecture
composed of 24 residual blocks was employed, followed by a
linear neural network with 128 output nodes as feature extractor.
The complete network was trained end-to-end, using a tempera-
ture scaled cross entropy loss. The contrastive learning objective
enforces the normalized, 128-dimensional feature vectors to be
aligned for adjacent time intervals and disaligned for temporally
distant time intervals25. To classify a given test hour as regular or
SCC event, the similarity between features of the test hour and the
annotated regular hours, which represent the training set are
computed. Test hours with low similarity were treated as
anomalies. Only features with a high signal-to-noise ratio across
all patients were considered, such that the model can be applied
to new patients without retraining. These robust features were
selected by enforcing the model to be invariant against random
shifts of the time frame by less than half an hour. The training
dataset was generated by randomly collecting 90% of the regular
hours for each patient26. The remaining 10% of the regular and
non-regular hours were used for testing. After training, the

features extracted by the model can be used to identify deviations
from the regular hours to detect SCC.
To quantify anomalies, the extracted features for each hour of

vital signs and physical activity were represented as a high
dimensional vector of unit length. For each hour of the test set, a
corresponding reference set was defined. The reference set either
represented the complete training set that included all patients
(patient-non-specific approach) or just the regular hours of the
training set that belonged to the same patient as the correspond-
ing test hour (patient-specific approach). The similarity between
different hours can be quantified by computing the scalar product
between feature vectors (cosine similarity25). To evaluate a test
hour, an SCC-Score was defined as one minus the maximum of all
cosine similarities between the test hour and the hours of the
reference set. A higher SCC-Score indicated a larger deviation from
what is expected to be a regular hour. The SCC-Scores for the
regular hours of the test set represent the null-distribution. The
null hypothesis assumes an hour to be regular and was rejected
for any hour with SCC-Score above a pre-specified significance
level (Fig. 4). The significance level has to be pre-specified to meet
clinical requirements and can be interpreted as the decision
boundary for the SCC classification problem. A patient-specific
evaluation can be realized by restricting the reference set and the
null-distribution to the regular hours of a single test patient. This
patient-specific restriction is used for statistical testing but not for
training the score, as the score is always trained on the regular
hours of the total cohort. The SCC-Scores of the test set were
evaluated per hour, even though SCC events were annotated
per day (24 h). Averages of SCC-scores over 24 h were denoted as
per-day SCC-scores.

Anomaly detection method
Identifying anomalies is inherently a highly unbalanced binary
classification problem, where normal or typical data points are
highly abundant and abnormal data points or outliers are typically
rare. The distribution of possible anomalies (out-distribution) is
unknown but assumed to be much broader than the distribution
of normal data points (in-distribution)27. To detect anomalies, we
follow the strategy of finding in-distribution specific features,
where we assume the existence of sufficiently large subsets of
data points that share at least some of these features. This strategy
implies that normal data points typically show high proximity to at
least one of the subsets in feature space, whereas outliers are
expected to be located more distant14.

Learning in-distribution specific features
One way to learn in-distribution specific features is to augment
the dataset with examples that show high variance for features
that are not in-distribution specific and are expected to co-occur
also in outliers but little variance for in-distribution specific
features. For instance, given an in-distribution that consists of
images of natural objects (e.g. images of ‘cat’, ‘ship’), then
transformations applied to each image, such as combinations of
moderate cropping and resizing, moderate color jitter, and
horizontal flip, have a strong effect on individual pixel values
(low-level features) but little effect on the object category (high-
level features)—a ‘cat’ remains a ‘cat’. Consequently, the informa-
tion shared between any two transformations of the same image
(positive pair) can be used to define the in-distribution specific
features. The downside of this approach is that we must know a
priori which transformations can significantly shift data points but
leave in-distribution specific features invariant.
For the time series data used in this work we don’t generate

new data but define as positive pair any two-time intervals, x and
x′ of 1000 s length that were randomly selected within the same
hour but separated by at least 500 s. The valid transformations are
random shifts of these intervals within a given hour by at most
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500 s. To extract the features that are invariant under these
transformations, we map each time interval, x, to a d dimensional
feature vector h, with the help of a deep convolutional neural
network, h ¼ f 0ðxÞ, as a feature extractor. The network f 0ðxÞ is
trained by a Self-Supervised Contrastive Learning objective, which
approximately maximizes the mutual information for the sampled
positive pairs across all recorded hours.

Self-supervised contrastive learning
The self-supervised contrastive learning objective aligns feature
vectors that share invariant information in feature space (positive
pairs) and simultaneously pushes feature vectors apart that don’t
share invariant information (negative pairs). Negative pairs are not
generated explicitly but arise from building pairs of time intervals

Fig. 4 Development of a deep learning model for calculation of an SCC-Score. a Time series of vital signs and physical activity recorded by a
medical wearable. b Clinical documentation, such as patient charts or laboratory results, that were reviewed for identifying SCC events.
c According to the clinical documentation, the hours without evidence of SCC were annotated as regular hours, the remaining hours were
regarded as non-regular. d regular hours for each individual patient were randomly split into two datasets: 90% for training and 10% for
testing and generating a null-distribution. For cross-validation, the splitting was repeated ten times. For training the deep learning model, the
regular hours were presented to a deep neural network as part of a self-supervised contrastive learning objective. An SCC-Score based on the
similarity between a test hour and the closest regular hour from the training set was calculated. e A null-distribution of SCC-Scores from
regular hours in the test set was established. f For a given hour, a statistical test under the null-distribution was applied to detect SCC, with a
significance level selected by clinical requirements.
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from different hours. Let hi ¼ f 0ðxiÞ and h0i ¼ f 0ðx0iÞ be feature
vectors for two randomly selected time intervals within the same
hour i of the training dataset. Then ðxi; x0iÞ is a positive pair and
ðxi ; x0kÞ a negative pair for i≠k. We define the similarity between
feature vectors by simðh1; h2Þ :¼ hT1h2

kh1kkh2k, which is the dot product
between l2 -normalized feature vectors h1 and h2 (cosine
similarity). In self-supervised contrastive representation learning,
a loss function can be defined by25

Li ¼ � log
expðsimðhi; h0iÞ=τÞ

expðsimðhi; h0iÞ=τÞ þ
Pn

k≠i expðsimðhi; h0kÞ=τÞ þ expðsimðh0i ; hkÞ=τÞ
� �

(1)

where τ>0 is a scalar temperature parameter, n is the number of
randomly selected hours (minibatch size), with two randomly
selected 1000 s intervals, xi and x0i , per hour. The temperature
parameter was set to τ = 0.07. The neural network f 0 was realised
by a ResNet architecture. The ResNet architecture is composed of
24 residual blocks. Each residual block consists of two convolu-
tional layers, each followed by batch normalisation and ReLU
activation. The convolutional layers have filters of size 16 with
stride 2. Each convolutional layer has 32 filters which doubles
every 12 blocks. The Resnet Output is passed into a projection
head consisting BN, ReLU and a linear layer. Details of the
architecture can be found in Shenda et al.26. The encoder, f 0 ,
maps inputs to a 128-dimensional feature space embedding. The
outputs of this network are l2-normalized, h=khk, and conse-
quently mapped onto a unit hypersphere. Five of the 12 wearable
signals of vital signs and physical activity come with a quality
index that ranges from 0–100. Every second of the five signals
with quality index are shown at their corresponding position in
the 101-dimensional quality index vector. The remaining entries of
this vector are set to zero. This representation results in a
5 ´ 101þ 7 ¼ 512 dimensional input for every second. An Adam
optimizer with parameters β1 = 0.9, β2 = 0.98, initial learning rate
of 10�3; and weight decay of 10�3 was used. The model was
trained with batch size 128 for 500 epochs.

Data preprocessing
The input features were stored with sample rate of 1 Hz by the
wearable device. The dataset of vital signs and activity data is
represented as Xnf gNn¼1, with Xn 2 RDxT , where N is the number of
hours across all patients, D is the input dimension and T is the
number of consecutive time points within 1 h. We take T = 3000,
which is less than the expected T = 3600 s for an hour, as we
frequently observed interruptions and therefore shorted T to keep
most of the consecutive time series in the data.

Score function for SCC detection
From the set of feature vectors for the training examples,
Dtrain ¼ hmf gKNm¼1, with K the number of randomly selected
1000 s intervals per hour, a score function can be defined to
evaluate whether a given test sample should be classified as
outlier (SCC). For a given feature vector of a test example,
htest ¼ f 0ðxtestÞ, the cosine similarity to the nearest training
example in Dtrain is taken as a score for detecting SCC samples.
Our cosine similarity-based SCC score, SSCCðxÞ, is defined as

SSCC xtestð Þ :¼ 1
K

XK

k¼1

1� max
hm2Dtrain

simðhm; hktestÞ
� �

(2)

We take K = 6 and the corresponding setfhktestg are random
samples from the same hour. The test example, xtest , is classified as
SCC if the SCC score is above a threshold. For patient-specific
evaluation, the cosine similarity is calculated with respect to the
nearest example among the training regular hours of the patient
being tested rather than the training regular hours of all patients.

Statistical analysis
Primary outcomes were the detection and prediction of clinically
documented SCC by the SCC-Score. Subgroup analysis was evaluated
for infectious SCC. For statistical analysis, differences between means
of hours annotated as regular and non-regular obtained from SCCIC-,
SCCOC- and SCCTotal-score were tested for significance using a two-
sided t-test, and adjustment for multiple comparisons was performed
by using Bonferroni correction. For clinical requirements, specificity
was reported at a sensitivity of ~95%.
To address overfitting, a ten-fold cross-validation for the 90/

10 split of regular hours was carried out, which included retraining
the model. Statistical significance was tested by an ANOVA
between the cross-validation splits of regular and non-regular
hours (Supplementary Fig. 3). Receiver Operating Characteristics
(ROC) analysis was carried out and the area under the ROC curve
(AUROC) was computed to evaluate the performance of the
different approaches in different settings. Standard errors of the
AUROC curves were computed from ten-fold cross-validation in
combination with bootstrapping over the test set. The null
distribution was generated by computing SCC-Scores for the
regular hours of the reference set, using cross-validation. To assess
SCC-Score prediction capabilities for infectious SCC (Table 1), the
performance of the score in the 120 h before and after the time
stamp of diagnosis (t= 0 h) were analyzed. An average z-score of
ten-fold cross-validation was calculated to assess the relative
effect of a SCC on the SCC-Score. A p-value < 0.05 was considered
significant. For data and statistical analysis, open-source software
tools were used.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
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